
UPDATING AND RE-MESHING VIRTUALLY DECOMPOSED MODELS

Benoit Lecallard1, Christopher M. Tierney1, Trevor T. Robinson1, Cecil G. Armstrong1,
Declan C. Nolan1, Alexander E. Sansom2

1Queenôs University Belfast, Belfast, U.K. t.robinson@qub.ac.uk
2Rolls-Royce Plc, Alexander.Sansom@rolls-royce.com

ABSTRACT

Generating hexahedral meshes is often an expensive process, which limits the use of high-fidelity numerical simulation methods
for design. Hexahedral meshes can be generated by decomposing a geometric model into simpler meshable regions, but robustly
propagating design modifications to the decomposed representation makes any attempt to update the mesh very challenging. In this

paper, a virtual topology workflow enabling automatic generation of hex-dominant meshes is extended to propagate parametric
modifications and feature changes to the decomposition and resulting mesh. Geometric and topological modifications are identified
and linked to the decomposition through virtual topology relationships. Modified regions are localized and reasoning on the virtual
decomposition enables their definition and associated meshing strategy to be updated. Instead of starting the meshing process from
the beginning, only modified cells are re-meshed. This provides an efficient and automated method to propagate design changes
down to the analysis model.

Keywords: Automatic decomposition, mesh generation, mesh update, hexahedral, parametric models, virtual topology

1. INTRODUCTION

The increasing use of finite element analysis throughout a
product lifecycle is limited by the ability to generate

appropriate simulation models. This is especially true for the
simulation of complex events, such as crash or large
displacement analyses, where generating the hexahedral
(hex) elements preferred for this task is very user-intensive
work. Simulation-based design depends on the ability to
quickly generate analysis models for many design variations
to run an optimization procedure. This is incompatible with
the manual analysis set up required in a typical hex meshing

workflow. Analysis requirements are also prone to change,
especially within coupled multi-physics analyses where
analysis results from one domain dictate updates for another.
For example, if a model is deformed by wear or thermal
expansion and is used as an input for subsequent analysis
these changes must be reflected in the downstream analysis
model.

Many tools have been developed during the last decades in

an attempt to automate hex meshing with various results [1].
They include direct methods such as Whisker Weaving [2]
and Plastering [3], as well as indirect methods such as tet-
combination [4]. Decomposition-based methods partitioning
the design geometry into smaller sub-regions for which a

simple meshing strategy can be found are the most widely

used methods. These meshing strategies include mapping
[5], sub-mapping [6] and sweeping [7], where a quad mesh
of a source face is swept in order to generate 3D hex
elements. Even if these tools fail to tackle generic
geometries, they can be integrated in an incremental
decomposition workflow to significantly alleviate the
workload of generating meshes. Virtual topology-based
decomposition, coupled with cellular modelling for meshing

workflows, has shown promising results and flexibility [8]ï
[10]. The benefits of using virtual topology (VT) for
generating meshes without altering the CAD model
definition were first presented by Sheffer et al. [11]. In the
context of this work, a cellular model is a decomposition of
space into cells of analysis significance. The interfaces in the
model are robustly captured and are cells in their own right
[12]. This structure means that the links between the
decomposed virtual representations and the design model

can be robustly maintained [13]. In addition, as a model is
decomposed for meshing, the cellular representation
maintains connections between the subset domains that
enable both the automation of downstream meshing and the
localization of modified cells after design changes.

After design changes, the mesh needs to be updated to
remain an accurate representation of the model. In the
Computer-Aided Design (CAD) environment, updating the

mailto:t.robinson@qub.ac.uk

design is straightforward, either by changing parameters
associated to the model or by adding/removing features in
the construction tree. However, applying the same design
modification to geometrically identical models that are
constructed with different feature orders may produce

unexpected differences that may be inadvertently
propagated to the analysis model.

Direct geometric editing (synchronous technology) is also
available, where the user can interactively manipulate
geometric entities without requiring access to the
construction tree, allowing modifications of the model
outside of the design environment. However, the analysis
model is often constructed in a separate Computer-Aided

Engineering (CAE) package, where such manipulations will
break the link to the original CAD model, and CAD-CAE
integration is a major bottleneck toward automation[14]. As
a result, the mesh cannot be as easily updated as the
construction tree and parameters are lost during the transfer
across packages. The user is often tasked to update the CAD
model before exporting it to the meshing environment where
many pre-processing activities, such as clean-up operations,

carried out to create the previous analysis model must be
repeated. Furthermore, most automated tools for hex-mesh
generation [2]ï[4] do not offer the ability to efficiently
update the mesh and require the whole decomposition
process to be repeated. One challenge is that decomposition
tools are often used to partition the design model
geometrically to create a decomposed representation fit for
hex meshing. These geometric partitions usually break the

links between the design model and the decomposed
representation, meaning that even if design changes can be
identified there are no relationships that can be exploited in
order to robustly update the decomposition. The major
challenges to automatically updating a hex-dominant mesh
created from a decomposition via the approach proposed
herein are to:

¶ Identify the geometric and/or topological changes

resulting from a design update.

¶ Reflect design amendments on the analysis model

by exploiting the virtual topology relationships
stored when generating the initial decomposition.

¶ Update the decomposition used for meshing and

ensure it remains valid.

¶ Minimize the computational expense by re-using

as many existing elements as possible.

¶ Maintain mesh quality after update.

This work proposes to extend a virtual topology
decomposition workflow to address this problem, by using
an integrated cellular model to reflect parametric and feature
changes on the mesh. This paper first describes the virtual

topology framework used for automatic decomposition and
hex-dominant meshing. Then, handling feature and
parametric perturbations for re-meshing is presented. This is
done by first localizing the modifications, then updating the
analysis topology and finally updating the mesh locally. The
main contribution is the implementation of a cellular mesh
and interface management to enable mesh updates even

when the topology of the model is significantly altered.
Considerations on meshing strategies are presented to help
update the decomposition and the mesh.

2. RELATED WORK

Mesh update has been a topic of research for many years and
includes several domains such as mesh morphing, mesh

adaption and re-meshing. Mesh morphing [15] consists of
mapping an initial mesh onto a new geometry which is
similar to the initial geometry, either to account for the
model deformation, or to re-use an existing mesh on a
similar geometry (e.g. a design update). The mapping of
nodes requires knowledge of both the entities mapping
between the geometries and the node to entity associativity
in the original mesh. The mesh topology must remain
constant to ensure a correct mapping.

Mesh adaption [16] consists of modifying a mesh against
known quantities. It can be an iterative process to minimize
the simulation error while solving the computational
problem iteratively. Parametric modification in an
optimization loop can also drive mesh adaption procedures.
The mesh can be locally refined or coarsened, with or
without connectivity (or number of elements) modifications.
Sheffer and ¦ngºr have proposed a dual representation using

both the boundary and a parametric representation to link
design modifications and mesh adaption procedures [17]. In
particular, the history of virtual operations applied for
simplification is retained and automatically mapped on the
updated design model before meshing. Mesh updating is
done by moving the elements to the new geometry, and then
adjusting the mesh quality by using techniques such as
whisker-sheet operations. Feature displacements have been

investigated recently by Shen et al. [18], using mesh
deformation and the mesh is refined using density fields
extracted from the initial mesh. However, adaption
approaches are limited to simple parametric perturbations, as
the mesh topology needs to be consistent to be mapped.

Parametric perturbations can induce topological
modifications on a model. To this extent, Van Der Meiden
and Bronsvoort have defined a method to relate the range of

parameters to topological entities, therefore identifying
critical parameters of interest [19]. Sun et al. have proposed
a method using virtual topology to deform a surface mesh in
the presence of simple topological perturbations [20].

Re-meshing is employed whenever mesh generation
methods need to be re-applied either locally or globally to
the model. For example, fully re-meshing a model can be
avoided after feature insertion if the feature is meshed with
new elements and connected to the existing mesh. Smit and

Bronsvoort have successfully implemented a cellular
modelling-based approach to tetrahedral re-meshing [21].
After capturing the feature differences between two models
and their interactions, all the valid original nodes are mapped
to the new model, and new elements are created to fill the
gaps. However, in the absence of any link or equivalence
between elements and geometric cells, all the nodes need to
be classified and processed for re-meshing, which can be

slow for very large meshes.

Figure 1. Virtual topology-based workflow for automatic decomposition and meshing.

In this paper, hex-dominant re-meshing is addressed using a
cellular representation of a virtually decomposed model.
Only the sub-regions that need to be modified to
accommodate the design change are identified and re-
meshed, while maintaining the constraints of a structured

mesh. This allows design variations to be automatically
propagated throughout a virtual topology workflow and
reflected on the final mesh (Figure 4).

3. VIRTUAL TOPOLOGY DECOMPOSITION
AND MESHING

This section describes a virtual topology-based workflow
that integrates various reasoners for automatic
decomposition and meshing (see Figure 1).

The process takes a CAD model as an input and has two
main outputs. The first is a topological description of the
decomposed model called analysis topology, contained in a

Common Data Structure (CDS). The second is a mesh in a
CAE environment that is exported to a neutral format file.
The original topology is first extracted from the CAD to the
CDS, and a series of virtual topology split operations are
applied to create the analysis topology. This analysis
topology contains the virtual decomposition and is linked to
the original design topology through virtual topology
relationships stored in the CDS. Once the model has been
virtually decomposed, a mesh can be automatically

generated by using the meshing recipe reasoner (section 3.4)
and the mesh reasoner (section 3.5). Virtual topology allows
more freedom for preparing a model for meshing and
provides much more flexibility since the actual geometry is
not modified. Instead of storing partitioning surfaces, only
the method to construct them is stored (along with virtual
geometry curves, curves that are not connected to the B-Rep
design model but exist in the CAD environment, see section

3.3) and passed to the meshing environment to generate the
mesh.

3.1 Design topology extraction to CDS

The role of the common data structure (CDS) is to convey
information between the different steps and packages
involved in the automated virtual workflow. It is based on an

external SQL relational database, similar to the one
presented by Tierney et al. [22], [23]. The relations relevant
to virtual topology decomposition and meshing are shown in
Figure 1. Other data that does not fit within the CDS is
transferred using neutral formats. For example, virtual

geometry can be transferred using STEP or Parasolid format.
Meshes can be transferred using formatted text files, such as
bulk data files that contain nodal information and element
connectivity. The CDS contains the links to connect these
various representations.

The CDS is initialized by querying all the entities contained
in the CAD model through a topology extraction tool (Figure
1). Each entity is assigned a unique identifier when added to

the database, which is linked to the name and/or tag attribute
from the CAD system. Geometric attributes such as
coordinates for vertices or mid-points for edges are also
stored to aid tracking entities. Higher dimension entities can
also be identified from their bounding entities.

The topological definition of the CAD model is extracted
and stored in a design topology relation, which is duplicated
in an analysis topology relation. Both topology relations

contain a cellular representation of the model, with each
topologic cell defined recursively from lower dimension
elements forming their boundaries, along with the relative
orientation between the bounded cell and its boundary.

To enable virtual topology manipulations, a virtual topology
relation stores the history of the virtual operations applied on
the design topology to create the decomposition in the
analysis topology. The virtual topology relation contains the

link between the virtual entities (subset or superset
depending on the virtual split or merge operation) and their
host entities.

3.2 Decomposition reasoners

Regions suitable for hex mesh generation are identified
using a sequence of decomposition reasoners within the
proposed virtual topology workflow. A decomposition
reasoner encapsulates an algorithm to identify regions
suitable for a specific meshing method (e.g. sweeping,
mapping, templateé) in a generic way. Implementation

specific routines are handled outside of the reasoner, which

can be seen as a black box from the point of view of the
process. The input is a design model with its topology
extracted in the CDS. The output is splitting information
which is used by the virtual topology tool to partition the
domain, and a meshing strategy attribute specific to the

reasoner. The power of this virtual topology approach is that
multiple decomposition reasoners (sweep, multi-sweep, 3D
block, 2D blocké) can be integrated seamlessly within one
workflow

All the geometric queries of the reasoners are made through
a VT translator tool, which uses information stored in the
CDS and the combination of the CAD and virtual geometry
to query the analysis topology model and not the design

model. Hence, the reasoner can operate on a model that has
been virtually decomposed beforehand. This ensures that
reasoners can be used one after another and in any order, but
also allows virtual defeaturing to be carried out before the
decomposition and not just as a final step before meshing.
This ability to operate in the presence of virtual topology is
critical for a robust analysis workflow.

After the reasoners have identified which region to extract,

the splitting information is created. This is done by
identifying which entities need to be partitioned, and what
existing entities can be used to do so. Necessary geometric
information such as points or curves to complete the
definition of a split are also created by the decomposition
reasoners.

3.3 Virtual Topology reasoners

Virtual topology uncouples the topological definition of a
model from the geometrical one. This enables virtual
generation of a meshed analysis model without altering the

design model. Two VT reasoners are used in this process.
The VT translator transfers geometric information between
the real CAD model and the virtually decomposed model in
the CDS. The VT tool manipulates topological
representations in the CDS to clean or decompose a model,
by applying operators as described in [8], [11]. These
operators ensure that the analysis topology remains valid
after topological manipulation, with the relative orientation

of the virtual entities and the modifications properly
recorded and updated in the CDS.

The VT translator processes the geometrical splitting
information from the decomposition reasoner to create in the
CAD environment all the curves required to define
partitioning faces. These curves are referred to as virtual
geometry, since they only exist as a layer of geometry
independent from the design model in the CAD
environment. Virtual geometry curves are used as an input

by the VT tool to virtually partition the model to create the
analysis topology. This analysis topology is linked to the
design topology by a series of VT relationships resulting
from the application of VT operators, stored in the CDS.

Virtual topology requires definition of virtual entities to
formalize the relationship between virtual entities and their
host entities (if any) [11]:

- Parasite entities: entities that did not exist in the original

topology but lie on an existing entity of higher

dimension (i.e. an edge lying on the face it splits or a

face that lies in the interior of a body).

- Subset entities: subsets of host entities that are split by

a parasite entity of lower dimension.

- Orphan entities: entity without host (e.g. an edge in the

interior of a body bounding only parasite faces).

A virtual split operation uses a parasite entity on a host entity
of higher dimension to create subset entities. For example in
Figure 2(a), a face f1 which is a bounded portion of a
geometric surface can be split by adding a parasite edge e1

which is a bounded portion of a curve. The parasite edge lies
on the host shape to divide it into two subset faces f2 and f3,
but a single surface definition remains.

A virtual merge operation on the other hand groups multiple
host entities into one by removing lower dimensional entities
common to the hosts at their interfaces. For example, in
Figure 2(b), a vertex v2 bounding only two edges can be
removed to generate one superset edge e4. A merge

operation is required to update a modified decomposition
since it enables the recombination of adjacent cells locally,
without having to undo the whole decomposition operation.
It can also be used to simplify and clean the model definition
to facilitate mesh generation.

Figure 2. (a) The face f1 is virtually split by inserting
the parasite edge e1, and (b) edges e2 and e3 are
merged into e4 by virtually removing v2. Red
entities are virtual geometry.

Virtual parasites, subsets and orphan edges are
superimposed on the CAD design model as virtual geometry.
All their links with the analysis model only exist in the CDS,
and their purpose is to provide geometric information that

does not exist in the original design model. They are created
by a decomposition reasoner and can be easily transferred
between packages using a neutral format such as STEP.
Once added in the CDS, they can be used to aid virtual
topology manipulations.

3.4 Meshing recipe reasoner

The meshing recipe reasoner is used to translate the different
meshing strategies identified by the decomposition

reasoners into compatible mesh controls for hex-dominant
mesh generation. The input is a CDS containing the analysis
topology of the decomposed model along with the meshing
strategy identified for each volume cell, and geometric
information, such as aspect ratios of regions and curve

lengths, previously extracted from the CAD. The reasoner
outputs optimized division numbers for every curve and
meshing methods for faces to the CDS.

Different decomposition reasoners can be applied to the
model which will result in different meshing strategies with
different priorities. The specific reasoners used in this work
sought to create an anisotropic hex meshing recipe which
was conformal throughout.

Sweeping strategies are converted into constraints on the
number of elements following the methods applied in [9].
Source faces of sweepable regions can either be paved or
mapped, while wall faces must be mapped meshed. Figure 3
shows how the meshing constraints propagate through the
model, and the resulting mesh. Soft or hard goals on division
numbers are applied on each edge of the model. A hard goal
ensures a fixed division number will be applied (e.g. number

of elements through thickness), while soft goals are
optimized to meet the constraints. Constraints are checked to
remove overly constraining mapping equalities. All the
necessary geometric information is contained in the CDS,
hence this reasoner is package independent.

Figure 3. Flow of meshing constraints and
associated mesh.

The LPSolve [24] package is used to optimize each
individual number of elements on curves, by implementing
a revised simplex algorithm. As a result, the mesh is fully
constrained, which ensures order independence during the
meshing step, and guarantees a conformal mesh will be
obtained at interfaces.

3.5 Mesh reasoner

Once the meshing recipe has been generated, the mesh can
be generated in a CAE environment using the meshing

reasoner. The input to the mesh reasoner is the CAD model
and the CDS containing the meshing recipe. The output is a
conformal mesh.

The virtual partitioning surfaces are explicitly rebuilt from
the virtual geometry and used to split the geometry of the
model, hence becoming interfaces between sub-regions.
Depending on the package used, the model is transferred to
the meshing environment before or after the geometric

decomposition which will create all the analysis topology
entities. Mesh densities contained in the meshing recipe are
applied on each curve.

All the interfaces are checked and meshed first to ensure a
conformal mesh is obtained. The 2D surface meshes of all

the interfaces are stored in a common neutral format file,
with elements grouped by interface identifiers. This step is
required to enable mesh manipulation later, but it also offers
the possibility of the 3D meshes being generated on the
individual cells in parallel. All the source faces of sweepable
regions are meshed first, and hex elements are created by
sweeping. Residual regions, where there is no known hex-
meshing strategy identified by the reasoners, are tet-meshed

at the end, after a layer of pyramid elements has been
inserted to conform to the quad mesh of the interfaces. If the
decomposition reasoners have identified hex-meshing
strategies other than sweeping, the relevant meshing
algorithms can be applied by the meshing reasoner.

The mesh is then exported in a neutral format file such as a
Nastran input deck. This format enables the mesh to be
transferred into different meshing packages, and to be edited

simply by editing the mesh file.

3.6 Integrated workflow

The choice and sequence of decomposition reasoner to apply
is left to the user, while pre-defined workflows can be
identified for specific classes of geometries. This sequence
will define which meshing methods will be used, since the
same region could be identified by different reasoners for
different hex-meshing methods. An example of a virtual
decomposition workflow for automatic meshing is shown in
Figure 1. It includes a thin-sheet decomposition reasoner for

identifying thin regions which can be sweep-meshed through
their thickness and a long-slender decomposition reasoner
for identifying regions with one large dimension suitable for
sweeping. Models of thin-walled components are suitable
for thin-sheet extraction, where regions with one small
dimension compared to the other two offer a simple sweep-
meshing strategy [25]. Pairs of large parallel faces are
discretized and imprinted one onto another in order to

calculate their intersection in the parametric space. The
result is then projected back on the boundary representation
to identify appropriate partitioning geometry, which will be
used to create the virtual geometry and the virtual split
operations for sweep meshing through the thickness. This
integrated virtual topology workflow effectively
demonstrates multi-sweeping in thin-walled components,
with explicit interfaces in the decomposed cellular model
facilitating multi-directional sweeping.

Truss-like structures, or thin-walled structures with their thin
sheet removed, feature a lot of long-slender regions. A
similar approach to Sunôs method [26] is used to extract such
regions. Long edges with a large aspect ratio relative to the
width of the faces they bound are identified and grouped into
loops. These loops are then used to find loops of mappable
faces, which verify the conditions for sweep meshing. Cap
faces are identified as a loop of virtual edges. There may also

be an offset applied if the geometry is prone to the existence
of skewed elements. This virtual geometry is then used to
help virtually split the analysis model.

Figure 4. Workflow for updating the decomposition and mesh after design change.

Region attributes such as whether a region is thin-sheet or
long-slender are stored in the mesh recipe relation of the
CDS. This relation, along with the cellular model of the
analysis topology, informs the reasoner tools and enables
automatic identification of the meshing recipe. The meshing
recipe is then stored in the CDS, describing face and edge
meshing constraints in terms of size or number of elements.

Other decomposition reasoners have also been developed to

identify simple sweepable regions or to decompose models
into axisymmetric regions and repeated cyclic sectors,
providing a minimal meshable representation [27].

4. UPDATING THE DECOMPOSITION

Figure 4 shows how the virtual workflow described in the
previous section can be extended to handle design
modifications to update the decomposition and ultimately
the mesh. This section describes first how design
modifications are identified by comparing the new design
with the one stored in the CDS. Then, the constraints

stemming from the hex-meshing strategies assigned to
regions guide the update of the virtual geometry and the
analysis topology. This reasoner takes a CAD model with a
design change and the CDS associated with the previous
version of the design as an input, and outputs an updated
CDS for the new design (with updated virtual geometry),
which can be used to update the mesh.

Modifications of the design can have various effects on the

boundary representation of a model, especially for
decomposed models where the number of boundary entities
is increased. Figure 5 shows an example of a model
decomposed for sweep-meshing undergoing various design
modifications. Any design changes on a model can be
classified into the following types:

- Topology only modifications, where the boundary

representation is modified but not the shape. For

example, introducing imprints on a face subdivides the

face but the underlying surface geometry remains the

same.

- Geometric only modifications, e.g. Figure 5(c) where

only the geometry of the design is modified by

changing the part length. All topology remains

unchanged.
- Geometry and topology modifications, e.g. where new

features, such as bosses, fillets etc. are added or

removed from a model, Figure 5 (d), or where a

parametric perturbation results in an additional

topology change.

In order to update the decomposition, it is necessary to
propagate the aforementioned modifications to the analysis
topology. More specifically, the parasite entities used to

virtually decompose the model must be modified (if
necessary) alongside the virtual geometry in order to enable
the mesh to be updated. In this work, design modifications
can affect:

- Only the analysis model geometry. In this case it is

necessary to determine if the virtual geometry needs to

be updated, e.g. in Figure 5 (c) where the change in part

length L requires the invalid virtual geometry (dashed

red lines) to be morphed to the new model boundary.
- Both the analysis topology and virtual geometry, e.g.

feature modifications will trigger geometric and

topological modifications to propagate to the analysis

model, such as removing the fillet in Figure 5 (d).

If the parametric perturbation has modified the design
topology, then the analysis topology is also modified.
However, it is possible the topological connectivity of
parasite entities can be modified without changing the design
topology. For example, the thickness t of the bottom pad is
increased in Figure 5 (e), resulting in parasite entities whose

configuration is now altered. The two parasite faces were
disconnected in the original decomposition. However, in the
updated decomposition, Figure 5 (e), they now share a
common edge (in dashed bold). These changes can be subtle
but will have a profound impact on updating the mappings
required to update the mesh automatically.

Figure 5. (a) initial decomposition, (b) corresponding meshing strategies, (c) geometric only change, (d)
topological modification and (e) only the analysis topology is modified, one edge has an invalid projection.

Figure 6. Analysis topology before and after design modification for various configurations.

Figure 6 shows procedures used in this work to determine
the classification for the various geometric and topological
configurations for decomposition update that can arise upon
design modification (virtual faces shown in dark grey for
visualization). This structure has been determined to be the

most suitable for the mesh types being used in this paper,
however a different structure or ordering may be better
suited to different models, or the requirements of different
analysts. Although only design changes involving
geometrical modifications are used to illustrate the
workflow, topological only modifications are handled in the
same way. Some configurations are easy to update, e.g. for
a purely geometric update where both the boundary topology

and virtual geometry have not changed. However, the top
right configuration is very challenging to update, as the
bottom host face on which the boss edges were projected has
become two unconnected faces due to the extension of the
pocket. This is related to the persistent naming problem [28],
where parametric modifications trigger topology changes
that modify the underlying geometry.

The workflow in Figure 9 describes the method used to

identify the aforementioned design changes and to update a
virtually decomposed model after such design changes.
Topological and geometrical modifications are identified
from the CAD model. After the design modifications have
been identified at the design topology level, analysis model
modifications need to be identified. This is done by checking
if the virtual decomposition history can be mapped on the
new design, by checking if all the virtual splitting entities

still lie within their hosts. Mapping constraints inferred from
hex-meshing strategies are checked to ensure they are still
valid and can inform the update of projected virtual
geometry. Finally, all the candidate bodies for re-meshing
are identified.

4.1 Tracking parametric and feature
modifications

The CDS contains a representation of both the analysis
topology and the original design topology independently
from the CAD environment and also stores the virtual
topology relationships required to transform one into the
other. The original topology in the CDS is used to identify

and classify both geometric and topological modifications
after the CAD model has been updated. The VT relationships
provide the link to map the changes in design to the analysis
topology.

This section will describe how changes to the model in the
CAD environment are propagated to the original topology in
the CDS and then to the analysis topology describing the
decomposition. The key point is that all entities in the

original topology and analysis topology are linked to those
in the CAD/CAE environment through two different
attributes:

1) Name attributes attached to entities in the CAD
environment. Any unique identifier offered by the CAD
system (name, tag, color ...) can be used, provided that is can
be assigned to an entity, queried and will persist between
different modelling sessions.

2) Geometric attributes defining unique geometric
identifiers of entities in the CAD environment, e.g. the center
point of the edges, as well as the coordinates of its end
vertices.

Both attributes are necessary, as structured interrogation of

them allows the geometric and topological modifications to
the design to be determined as outlined in the following
sections. Once modified entities have been identified, each
entity is mapped to an entity in the analysis topology through
a series of VT relationships and topological queries. This
enables the modifications to be identified and the entities of
the analysis topology to be classified.

This classification is done from lower dimension entities to

higher dimension ones, since any modification on the
boundaries of an entity will propagate to the entity, while an
entity can be modified without having its boundaries
modified. While some CAD packages offer the ability to
attach name attributes to vertices, other packages have not
implemented this capability. Coordinates used as geometric
attributes are not enough to classify vertices in the absence
of name attribute, as a design change can move a vertex to

the location of a different vertex that is also modified.
However, the matching of the geometric attribute for edges
includes checking the coordinates of both the mid-point and
the bounding vertices. Therefore, the edge classification is
based on the vertex classification, but not only as the mid-
point factors as well. In this implementation, edges are
classified first, so that vertex classification can be guided by
the bounded edges classification.

Figure 7. a) Original decomposition, b) the
decomposition is not updated after a fillet is added,
c) original entities classification, d) analysis
entities classification, e) open design loops are
closed and new virtual entities are identified, f)
open analysis loops are closed and g) updated
decomposition.

